Issue
ISSUE
I have run other dag files previously they all give this message even if they pass or fail.
Goal
Get this error fixed
Log that contains the error
I got this after running simple dag
241adsgf1108
*** Log file does not exist: /opt/airflow/logs/dag_id=numpy_pandas/run_id=manual__2022-09-27T16:31:22.968544+00:00/task_id=print_the_context/attempt=1.log
*** Fetching from: http://241adsgf1108:8793/dag_id=numpy_pandas/run_id=manual__2022-09-27T16:31:22.968544+00:00/task_id=print_the_context/attempt=1.log
*** !!!! Please make sure that all your Airflow components (e.g. schedulers, webservers and workers) have the same 'secret_key' configured in 'webserver' section and time is synchronized on all your machines (for example with ntpd) !!!!!
****** See more at https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html#secret-key
****** Failed to fetch log file from worker. Client error '403 FORBIDDEN' for url 'http://241adsgf1108:8793/dag_id=numpy_pandas/run_id=manual__2022-09-27T16:31:22.968544+00:00/task_id=print_the_context/attempt=1.log'
For more information check: https://httpstatuses.com/403
Commands
docker build -t my-image-apache/airflow:latest-python3.8 .
docker-compose up
Environment
- AWS EC2
- Ubuntu 20.04
Folder Structure
- airflow /
- docker-compose.yml
- Dockerfile
- dags [FOLDER]/
- all_python_dag_files.py
Files
my dag file
import pendulum
from airflow import DAG
#from airflow.decorators import task
from airflow.operators.python import PythonOperator
with DAG(
dag_id="numpy_pandas",
schedule=None,
start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
catchup=False,
tags=["example"],) as dag:
def numpy_something():
"""Print Numpy array."""
import numpy as np # <- THIS IS HOW NUMPY SHOULD BE IMPORTED IN THIS CASE
import pandas as pd
d = {'col1': [1, 2], 'col2': [3, 4]}
df = pd.DataFrame(data=d)
print(df)
a = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
print(a)
#a= 10
return a
run_this = PythonOperator(
task_id="print_the_context",
python_callable=numpy_something,
)
dockerfile
FROM apache/airflow:latest-python3.8
COPY requirements.txt .
COPY personal_python_file.py /usr/local/airflow/dags/personal_python_file.py
RUN pip install -r requirements.txt
docker-compose.yml
---
version: '3'
x-airflow-common:
&airflow-common
# In order to add custom dependencies or upgrade provider packages you can use your extended image.
# Comment the image line, place your Dockerfile in the directory where you placed the docker-compose.yaml
# and uncomment the "build" line below, Then run `docker-compose build` to build the images.
image: ${AIRFLOW_IMAGE_NAME:-my-image-apache/airflow:latest-python3.8}
### SAME AS IN MY DOCKERFILE "FROM apache/airflow:latest-python3.8" BUT I CAN MODIFY IT AS THE IAMGE THAT I GNERATE IS THE IMPORTANT ONE
# my-image-apache/airflow:latest-python3.8}
# build: .
environment:
&airflow-common-env
AIRFLOW__CORE__EXECUTOR: CeleryExecutor
AIRFLOW__DATABASE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow
# For backward compatibility, with Airflow <2.3
AIRFLOW__CORE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://airflow:airflow@postgres/airflow
AIRFLOW__CELERY__BROKER_URL: redis://:@redis:6379/0
AIRFLOW__CORE__FERNET_KEY: ''
AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true'
AIRFLOW__CORE__LOAD_EXAMPLES: 'false'
AIRFLOW__API__AUTH_BACKENDS: 'airflow.api.auth.backend.basic_auth'
_PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:-}
# I have added these
AIRFLOW__CORE__ENABLE_XCOM_PICKLING: 'true'
#AIRFLOW__CORE__DAGS_FOLDER: /opt/airflow/dags
#connect local and docker conatiner DAGS folers
#AIRFLOW__CORE__DAGS_FOLDER: ./dags
# AIRFLOW__CORE__PLUGINS_FOLDER: /opt/airflow/plugins
# AIRFLOW__CORE__LOGGING_CONFIG_CLASS: airflow.utils.log.logging_config.DEFAULT_LOGGING_CONFIG
# AIRFLOW__CORE__LOGGING_LEVEL: INFO
volumes:
- ./dags/:/opt/airflow/dags
- ./logs/:/opt/airflow/logs
- ./plugins/:/opt/airflow/plugins
user: "${AIRFLOW_UID:-50000}:0"
depends_on:
&airflow-common-depends-on
redis:
condition: service_healthy
postgres:
condition: service_healthy
services:
postgres:
image: postgres:13
environment:
POSTGRES_USER: airflow
POSTGRES_PASSWORD: airflow
POSTGRES_DB: airflow
volumes:
- postgres-db-volume:/var/lib/postgresql/data
healthcheck:
test: ["CMD", "pg_isready", "-U", "airflow"]
interval: 5s
retries: 5
restart: always
redis:
image: redis:latest
expose:
- 6379
healthcheck:
test: ["CMD", "redis-cli", "ping"]
interval: 5s
timeout: 30s
retries: 50
restart: always
airflow-webserver:
<<: *airflow-common
command: webserver
ports:
- 8080:8080
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:8080/health"]
interval: 10s
timeout: 10s
retries: 5
restart: always
stdin_open: true
tty: true
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
volumes:
- ./airflow:/usr/local/airflow
airflow-scheduler:
<<: *airflow-common
command: scheduler
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type SchedulerJob --hostname "$${HOSTNAME}"']
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-worker:
<<: *airflow-common
command: celery worker
healthcheck:
test:
- "CMD-SHELL"
- 'celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"'
interval: 10s
timeout: 10s
retries: 5
environment:
<<: *airflow-common-env
# Required to handle warm shutdown of the celery workers properly
# See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation
DUMB_INIT_SETSID: "0"
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-triggerer:
<<: *airflow-common
command: triggerer
healthcheck:
test: ["CMD-SHELL", 'airflow jobs check --job-type TriggererJob --hostname "$${HOSTNAME}"']
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
airflow-init:
<<: *airflow-common
entrypoint: /bin/bash
# yamllint disable rule:line-length
command:
- -c
- |
function ver() {
printf "%04d%04d%04d%04d" $${1//./ }
}
airflow_version=$$(AIRFLOW__LOGGING__LOGGING_LEVEL=INFO && gosu airflow airflow version)
airflow_version_comparable=$$(ver $${airflow_version})
min_airflow_version=2.2.0
min_airflow_version_comparable=$$(ver $${min_airflow_version})
if (( airflow_version_comparable < min_airflow_version_comparable )); then
echo
echo -e "\033[1;31mERROR!!!: Too old Airflow version $${airflow_version}!\e[0m"
echo "The minimum Airflow version supported: $${min_airflow_version}. Only use this or higher!"
echo
exit 1
fi
if [[ -z "${AIRFLOW_UID}" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m"
echo "If you are on Linux, you SHOULD follow the instructions below to set "
echo "AIRFLOW_UID environment variable, otherwise files will be owned by root."
echo "For other operating systems you can get rid of the warning with manually created .env file:"
echo " See: https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#setting-the-right-airflow-user"
echo
fi
one_meg=1048576
mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg))
cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat)
disk_available=$$(df / | tail -1 | awk '{print $$4}')
warning_resources="false"
if (( mem_available < 4000 )) ; then
echo
echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m"
echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))"
echo
warning_resources="true"
fi
if (( cpus_available < 2 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m"
echo "At least 2 CPUs recommended. You have $${cpus_available}"
echo
warning_resources="true"
fi
if (( disk_available < one_meg * 10 )); then
echo
echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m"
echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))"
echo
warning_resources="true"
fi
if [[ $${warning_resources} == "true" ]]; then
echo
echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m"
echo "Please follow the instructions to increase amount of resources available:"
echo " https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html#before-you-begin"
echo
fi
mkdir -p /sources/logs /sources/dags /sources/plugins
chown -R "${AIRFLOW_UID}:0" /sources/{logs,dags,plugins}
exec /entrypoint airflow version
# yamllint enable rule:line-length
environment:
<<: *airflow-common-env
_AIRFLOW_DB_UPGRADE: 'true'
_AIRFLOW_WWW_USER_CREATE: 'true'
_AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow}
_AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow}
_PIP_ADDITIONAL_REQUIREMENTS: ''
user: "0:0"
volumes:
- .:/sources
airflow-cli:
<<: *airflow-common
profiles:
- debug
environment:
<<: *airflow-common-env
CONNECTION_CHECK_MAX_COUNT: "0"
# Workaround for entrypoint issue. See: https://github.com/apache/airflow/issues/16252
command:
- bash
- -c
- airflow
# You can enable flower by adding "--profile flower" option e.g. docker-compose --profile flower up
# or by explicitly targeted on the command line e.g. docker-compose up flower.
# See: https://docs.docker.com/compose/profiles/
flower:
<<: *airflow-common
command: celery flower
profiles:
- flower
ports:
- 5555:5555
healthcheck:
test: ["CMD", "curl", "--fail", "http://localhost:5555/"]
interval: 10s
timeout: 10s
retries: 5
restart: always
depends_on:
<<: *airflow-common-depends-on
airflow-init:
condition: service_completed_successfully
volumes:
postgres-db-volume:
Tried Already:
- Airflow giving log file does not exist error while running on Docker
- https://forum.astronomer.io/t/log-file-does-not-exist/277 (can not access jira link)
Solution
I have solved it airflow 2.4.0 and 2.3.4 has this bug but they will resolve it at the 2.4.1 update. You can also install 2.3.3 that is totally fine now I am using that.
SOLUTION [official] i. don’t use latest ii. use 2.3.3 - https://airflow.apache.org/announcements/ 1) Sorry if not clear, but this already happened in 2.4.0, which I installed today (It was fine on 2.3.3 and before). Running on Python 3.10.5. - https://github.com/apache/airflow/issues/26492#issuecomment-1251078527 2) ACTUAL FIX - https://github.com/astronomer/airflow/commit/af01ddf5b1c528c3de2c959c499e7289decc7a26
Answered By - sogu Answer Checked By - Clifford M. (WPSolving Volunteer)